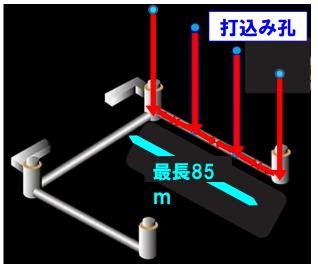
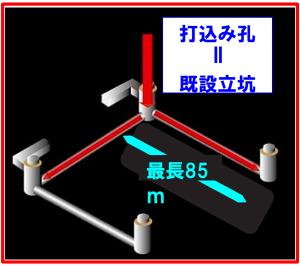
場	Ī	分類			
原子炉建屋内	RB			1	時間
タービン建屋内	TB		_	2	距離
R ZONE	B			3	遮へい
Y ZONE	Υ	\mathbb{H}		4	線源の除去
G ZONE	G	1 (ı	5	遠隔、ロボット化
その他(7			6	汚染拡大防止
)	_			(7)	その他

被ばく低減対策好事例集

その他() Z		6 汚染拡大防止 7 その他	番号		29-22			
内	容	超流動コンクリート材の開発・使用による作業量削減							
作業	部位	3号機タービン建屋海側							
概	略	超流動コンクリート材を開発したことにより、新たなコンクリート打ち込み孔の掘削 を省略でき、その結果、埋戻し等の作業も削減することができた。							
				対策	長前	対策後			
評 価 (定性 定量)	効果	被ばく線量(mSv	人) 相対(直1.0	相対値0.25				
		人工数(人日)	_	_					

事例詳細


対策前 従来のコンクリートでは、水平部の流動性が悪く、新たなコンクリート打ち込み孔を掘削する必要があった(下図 左)。


対策内容 流動性の高いコンクリートを開発することで、新たなコンクリート打ち込み孔の掘削を省略できた(下図右)。

◆在来工法

◆新工法を採用

既設立坑のみを打込みに活用

◆長距離水中流動充填材の性能を生かした施工

- ・中間打込み孔の省略 削孔, 打込み, 高さ計測, あと埋めの追加作業ゼロ
- ・最小限の人員配置

1箇所からの打込み:省人・省力化施工

被ばく線量:約75%削減